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SIDESLIP OF WING-BODY COMBINATIONS

By Paul E. Rubbert

THE BOEING COMPANY
Seattle, Washington

1.0 SUMMARY

A theory is developed for predicting the aerodynamic properties of an airplane in side-

slip. It is developed around a model problem consisting of a wing-body combination.

The basic approach used is perturbation theory. A solution is assumed in the form of an

asymptotic expansion in powers of the small parameters governing angle of attack, angle of

sideslip, wing camber, wing thickness, body radius variation, and body camber. Second-order
terms governing the interaction between sideslip and the other parameters are retained. It is
found that when wing dihedral is large, the dominant sideslip effects occur in the first-order
terms. When dihedral is small, however, the dominant sideslip effects occur at second order
and depend on products of sideslip and angle of attack, sideslip and wing camber, etc.

Particular integrals for the inhomogeneous second-order problems are given which auto-
matically satisfy the wake boundary condition. Hence, the remaining homogeneous part can
be formulated in terms of distributions of sources and elementary horseshoe vortices on the
boundary surfaces in a manner entirely analogous to that commonly done for the first-order
problems.

The present formulation is shown to produce results which reduce to known solutions
for the infinite yawed wing and for a general planar wing in sideslip.
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2.0 INTRODUCTION

The development of a small-disturbance theory for the aerodynamics of an airplane in

sideslip entails a description of the airplane geometric features and the inclination of the on-

coming stream in terms of small parameters. The parametric description must be such that

the flow field reduces to a uniform stream in the limit as all parameters vanish.

For planar wings the problem can be formulated using coordinate systems aligned either

with the freestream or along the plane of symmetry of the wing as shown in figure 1.

(a) Skewed Planform X
(b) Skewed Freestream

FIGURE 1.-AL TERNA TE FORMULA TONS

In the former case the planform is skewed with respect to the coordinate system by the

sideslip angle d, which remains constant in the limit as the angle of attack and wing thickness
parameters approach zero. Thus, 4 does not appear directly in the problem as a small param-
eter and is not subject to a limit process. However, in the case of the skewed stream formula-
tion,4 appears directly as a small parameter for which a limit processs may be defined.

Lowest order solutions from the skewed planform formulation display the dominant
effects of sideslip. However, since sideslip does not appear explicitly as a separate small
parameter, the rates of change of flow properties with angle of sideslip, and lateral stability
derivatives, must be computed by finite difference from solutions obtained at different angles
of skew.

The lowest order solutions in the skewed freestream formulation do not produce the
dominant sideslip effects. The first order in4 solution for a flat wing with no dihedral pro-
duces nothing, since the sideslip component of the freestream, which is directed along the y
axis, remains undisturbed by the presence of the planar wing. The dominant sideslip effects
occur in second-order terms involving products of sideslip and angle of attack, sideslip and
thickness, etc. These terms contain the sideslip parameter explicitly, and provide directly the
rates of change of flow properties with sideslip and the interaction between sideslip and angle
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of attack, etc. Thus, the results produced by this formulation appear in a form that is more

directly applicable for stability and control work and other aerodynamic applications.

For more complex configurations containing a fuselage, nacelles, dihedral, etc., a formu-

lation using the skewed planform approach becomes very unwieldly, because of the difficul-

ties involved in defining parametrically the geometrical shape such that the flow reduces to a

uniform stream in the limit as the small parameters vanish. The skewed stream approach, on

the other hand, can use the same parametric geometry definition normally used for symmet-

ric conditions. Hence, for the present work a decision was made to use the latter formulation,

even though it entails a higher order development.
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3.0 SYMBOLS

Ao freestream sonic speed

aR(x) body radius variation from the mean body surface (eq. 1)

B I I1- M2

Cp complete pressure coefficient (eq. 10)

CPa pressure coefficient due to body radius variation (eq. 28)

Cpag pressure coefficient due to body radius variation and sideslip interaction (eq. 28)

Cpc pressure coefficient due to body camber (eq. 28)

Cpcg pressure coefficient due to body camber and sideslip interation (eq. 28)

Cp pressure coefficient due to angle of attack (eq. 28)

C pressure coefficient due to angle of attack and sideslip interaction (eq. 28)

Cp pressure coefficient due to sideslip (eq. 28)

Cpe pressure coefficient due to wing camber (eq. 28)

Cp pressure coefficient due to wing camber and sideslip interation (eq. 28)

Cpr pressure coefficient due to wing thickness (eq. 28)

Cp -r pressure coefficient due to wing thickness and sideslip interaction (eq. 28)

cG(x) body camber distribution (eq. 2)

Ks potential induced by a point source (eq. 36)

K potential induced by an elementary horseshoe vortex (eq. 34)

A lateral coordinate along a surface

M freestream Mach number

m source density
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n coordinate normal to a surface

n unit vector normal to a surface

P radius of mean body surface (eq. 1)

q local flow speed

r body radius

r radius vector from a surface point to a field point

S denotes a surface

s spanwise coordinate

u, v, w perturbation velocity components

V0 freestream speed

x, y, z Cartesian coordinates (fig. 2)

CO angle of attack

angle of sideslip

V vorticity density (also the ratio of specific heats)

A qn discontinuity in the normal velocity component across a surface (fig. 11)

A qt discontinuity in the tangential velocity component in the lateral direction

across a surface (fig. 1 1)

lateral width of a surface strip (fig. 12)

9H(x,s) wing camber form (eq. 3)

A sweepback angle

see figure 6

, ' local coordinates (figs. 12, 13, 14)

0P density
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7 F(x,s) wing thickness form (eq. 3)

complete velocity potential

' P denotes a particular solution

(O
s  portion of a perturbation potential contributed by sources

Cv portion of a perturbation potential contributed by vortices

90 wing dihedral angle (fig. 4)

gradient operator

[ ] denotes discontinuity of a function across a surface

Perturbation velocity potentials (eq. 5)

9o' angle-of-attack effect.

first order sideslip effect

axial flow over uncambered body with a thin, uncambered wing.

body camber effect.

Vwing camber effect

15 wing thickness effect.
5.

?1 angle-of-attack and sideslip interaction.

V body thickness and sideslip interaction.

body camber and sideslip interaction

wing camber and sideslip interaction.

wing thickness and sideslip interaction.
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4.0 GEOMETRY DEFINITION

The basic theory is developed around a model problem consisting of a wing with arbi-

trary dihedral attached to an infinitely long fuselage. The results can be readily extended to

include multiple lifting surfaces such as horizontal and vertical tails, as well as nacelles, struts,

and similar appendages. The effects of body truncation in the form of a pointed nose and tail

can be added in a manner similar to that described by Woodward (ref. 1), wherein the classical

slender body solution representing the pointed nose and tail is patched into the results of the

present analysis.

Let all length dimensions be scaled by the average wing chord and assigned to be of order

unity. The X axis of the coordinate system is aligned lengthwise with the configuration, as

shown in figure 2.

FIGURE 2.-COORDINATE SYSTEM

The Y axis points to the right of an observer seated in the body, and the Z axis is directed

upward.

The freestream velocity V,. is inclined at an angle ot to the X Y plane. The component

of V. in the X y plane is inclined at the sideslip angle 6 to the X axis. When the compo-

nent of along the Y axis is directed in the positive y direction,.d shall be defined as

positive.

7



The body shall be of circular cross section, and may be cambered. The body radius may

vary slightly along its length. The nomenclature chosen for the body is shown in figure 3.

Body radius distribution t = P 4 aR ( X) - <( I

Body mean line = C ( ) C .( \

FIGURE 3.-BODY GEOMETRY

The radius distribution of the body is denoted as

r = P + a. ( x) (1)

where

P = constant = 0(1)

R (x) =o()

The body camber distribution is

= c G (x) (2)

where

G(x) = o0( )

C .<

With this notation, the body approaches a cylinder in the limit as ., C - 0.

The wing shall be positioned along a mean surface described by a = ( S ),

=p y (S ), whose generators are parallel to the X axis, as shown in figure 4.

8



S-- Mean wing surface

Mean fuselage surface

Rear View

FIGURE 4.-WING DIHEDRAL SHAPE

The wing dihedral distribution is defined by (p (s) , where 5 is distance measured along
the span. For the initial analysis, p (s) is assumed to be 0(1).

The wing surface shape is described parametrically as a function of the coordinates

•(X, S) . Decomposed into camber and thickness, the wing surface shape becomes

(3)

t ) = dw (s)- rF( ,s) cos + + IJ (×) CO JP

where

F( x s) describes the thickness shape

I ( 5 ) describes the camber shape

"" G are small parameters governing the magnitude of the thickness and camber
distributions

The upper and lower signs refer to the upper and lower wing surface, respectively. With these
definitions, an airfoil section generated by a cutting plane normal to the mean wing surface
assumes its usual definition of

, - t F-F( x,s) + e14 ( s) (4)
AIRFOIL
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5.0 EXPANSION OF THE VELOCITY POTENTIAL

An asymptotic expansion of the velocity potential containing all first-order terms plus

the second-order interaction terms involving the sideslip angle d is assumed to be of the form

tX + r4 + C 7- + 04 + + 02

The various perturbation potentials appearing in this expression can be interpreted in the

following manner.

5*0 angle-of-attack effect.

i, first order sideslip effect

(o2  axial flow over uncambered body with a thin, uncambered wing.

S body camber effect.

yf wing camber effect

s wing thickness effect.

<,. angle-of-attack and sideslip interaction.

<P body thickness and sideslip interaction.

7' body camber and sideslip interaction

0 wing camber and sideslip interaction.

Po wing thickness and sideslip interaction.

The objective in choosing this particular form is to obtain a sequence of simplified prob-

lems governing the primary effects of camber, thickness, angle of attack, and sideslip. Second-
order terms involving the sideslip angle 4 are retained in recognition of the fact that the
dominant sideslip effect may appear as either a first-order or a second-order effect, depending
primarily on the magnitude of the wing dihedral. For the case of a wing with large dihedral,
the potential 'P, will be of order unity (its magnitude is governed primarily by the wing
dihedral). In that case, the first-order term 9 (f1 gives the dominant sideslip effect and all
second-order terms could be neglected. For the case of a wing with no dihedral, however, 5,

10



is zero and the dominant sideslip effect is given by the second-order terms. Thus, in the

general case it is necessary to include at least some of the second-order terms given in eq. (5)

to ensure that the dominant sideslip effect is not overlooked. Arguments will be given later

for eliminating some of these terms.

Substitution of eq. (5) into the equations of motion and the boundary conditions will

yield, after equating like powers of the small parameters, a series of equations and boundary

conditions for the determination of each of the separate perturbation potentials.

11



6.0 BOUNDARY CONDITIONS

The boundary conditions consist of the requirement that the flow be parallel to all solid

surfaces, the Kutta condition for subsonic trailing edges, continuity of pressure across the

wake, and the vanishing of disturbances at infinity. The requirement that DB/Dt = 0, where

B(X,4pt,Z,) defines the position of the solid surfaces, leads to the appropriate expressions

for the solid surface boundary condition.

6.1 BOUNDARY CONDITIONS ON THE WING

The equation of the wing surface, (3), together with eq. (5) for the velocity potential,

are substituted into the expression DB/Dt = 0 to yield the result

5y a ,X [i + + + r o[-The var- otenal o B l o, e in T o s

=i- [ sin g - T cos -F a 5ir~ o e( -cos 9)

n v S n ) 0 [ + O o a +i' i Ct y .c t + fr o , n (6)a i6e(6)

+ Cs cos - ri V+'os SO) + as

G 4 o )] , + ,, + , (7- 9,Z +...sr

07? 6=

where higher order terms not considered in the expansion (5) have been deleted.

The various potentials on B = 0 must now be expressed in Taylor series about the

mean wing surface. Since we are interested in retaining only those second-order terms

involving products of 6, this operation will introduce extra terms only from 4 and

,c appearing in eq. (6). The proper expansion is

( 0), (77 =- o)

-(7( ',)

and

( = o , (77 + o)-, a,

where n is a normal coordinate measured upward from the mean wing surface. The ± sign

denotes the upper or lower surface of the wing, respectively.
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Inserting eq. (7) into (6) and equating orders of magnitude finally results in the boundary

conditions to be applied on the mean wing surface for the various potentials.

O (c): = - coS
an7

o ( a) : V = oo9,  - sin qj

o (a): a . _ o

0 (c) " a 0

0(e)- 'P4 - Wn
an ax

o (') : = -

a77

0(cz,): a '17 o (8)

013

oos rt + +3

where
Cos 4. , 1 --



Note that the potentials appearing on the right-hand side of the o(e 6) andO(""

expressions may be discontinuous across the mean wing surface, indicating that a source-like

term may be present in the solution.

6.2 BOUNDARY CONDITIONS ON THE WING WAKE

The condition to be satisfied is that the pressure be continuous across the wake surface.

Introducing expansion (5) into the exact expression

C p 6M* 2 (. 2 i , (9)

where

M = freestream Mach number

V. = freestream speed

= local flow speed

Ad. = sound speed in the undisturbed stream

and expanding in powers of the small parameters yields the following expression for Cp.

CP =-2 , - ,,, +c -f a f'z) +  C 5P3X 4 C <? + T%, €

+ Cp( 2' + ° , v - M2 _'o V _,x_

- a4(9 p, -/- 12 go, 5% $)

+ X - 3y + IV If V 3 - M 2 lX P3 )(10)

+ e (V t + - , • 7o L -A A4Z4r

The pressure coefficient on the actual wake surface (whose position is generally unknown)

is next expressed in a Taylor-series expansion about the mean wake surface, a cylindrical sur-

face lying directly behind the mean wing surface. Let the deviation of a point on the actual

wake from the mean wake surface be denoted as j (x) , A (x), as shown in figure 5.

14



Point on mean wake surface
Mean wake surface

SA Corresponding point
Actual wake position o n actual wake

surface

FIGURE 5.-WA KE CROSS SECTION

The distances A (x)) A L () are functions of the small parameters and may
be expressed as

A /(x) a- o I:;, + a& 1y. + c A& 3  eaj 4  + Ta s

Z(×)-- d ~ ot AZ- a i + CAZ3 + A 2 4 -- Zt.5

+ o (Ct) e c.

With this notation, the values of the potentials or their derivatives on the actual wake surface,
expressed as a series expansion about the mean wake surface, become of the form

$P/dc t Y /A . + A -Z +- 0 2 Aj,(Aa)2] (12)
wake Wake '.'tk W Ar

Equations (11) and (12) substituted into (10) furnish the appropriate expression for the
pressure coefficient on the wake. Imposing the requirement that the pressure coefficient
must be continuous across the wake to all orders of magnitude then results in the following
sequence of boundary conditions to be applied on the mean wake surface. (The notation [ ]

is used to denote the discontinuity of the function enclosed in brackets across the surface.)

15



0(6): ['IK] =0

0 (0) [ 03)( 0

- A~ ~ A~yII~vx 9  tA 09, 3x

- 3LV r2 ~ .

- AV N3 X FS xaJ

?34) x~p t] 4 M2 [ y50. [X V'c E'?,]- '7

[s'~ I Mzf [(? x 'p - v,.
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At first glance it appears that it may be necessary to compute the wake position from

the first-order solution in order to evaluate A j, a, A a0  , and A n which

appear in the second-order problems. However, it can be shown that the first-order X-velocity
components P,,,, f x - -, Ps, and their derivatives are continuous across the

mean wake surface, and hence the terms multiplying A go , 4yi , J Z. , and A ,
are all zero. The second-order wake boundary conditions are, in fact, independent of the

wake deformation.

6.3 BOUNDARY CONDITIONS ON THE BODY

The equation of the body surface is

5(x, ) = 0 = - C G ( y) - ir(x) 2.- 2 (14)

where

r(x ) = P + a R(x)

The requirement that DB/Dt = 0, necessary to produce the solid surface boundary con-
dition, leads with the use of eq. (5) to the expression

C -,- Co + bg a' - " - 4- A" +- ,

(15)

+ i" ,o +4 9,, . ... r. -~ 5%, ]- O
4- a+

oh B(X', , z) =o

where /where t , as sketched in figure 6.

The next step is to express the velocity components on 8 (x j, I )= O in terms of
their values on the mean body surface r- P by means of a Taylor-series expansion about

r - P . Figure 7 shows the spacial relationship between a point A on the actual fuselage

17



CG W)

Body surface cross section

FIGURE 6.-DEFINITION OF Lf

lr 'Point A on B(X , -) = O

Corresponding point A' on

CG(x) mean body surface

FIGURE 7.-EXPANSION OF BODY BOUNDARY CONDITIONS

surface 8 (x, , E)= 0 and the corresponding point A' on the mean fuselage surface of

radius P about the X axis. The velocity potential at the two points is related by the

expression

,(A) O (A') + cC . ) c 4- e ) 5,.77Z4

a ' (X Cos u -0 (16)
+ . a (x)cos,,, . O(C2, oa Qe) (16)

Sfo, )  a. a R()t ,-.c fx.

where 17 is a coordinate normal to the mean body surface and positive when directed outward.

18



Each term in eq. (15) is expanded in this manner. Finally, terms of equal order of mag-
nitude are equated to produce the body boundary conditions for the various potentials. For

convenience, certain higher order terms can be retained in the first-order boundary conditions

to facilitate the numerical application of the Karman-Moore method (ref. 2). In the following
equation, which follows from eqs. (15) and (16), these higher order terms, which in principle

are not needed but in practice may be convenient, are underlined.

O(): = - + , dx

() 5 - e
a71

acp dt - d Z

o(C) -1 G, .

a a f (17)

o (a,) a?7 CI

0 ) i's = 0

- o C=o

where - = /C~dsc..,.. + # SL-7 0 - P =0

19



7.0 FLOW EQUATION

The equations of motion and continuity for an irrotational flow can be written as:

(18)

The assumption of irrotationality is valid to the order of approximation sought. Eliminating
the pressure from these equations gives

2A2  Vc = ( Z) (Ao) (19)

where

Substituting the expansion (5) into eq. (19) and equating orders of magnitude produces

the governing equations in a straightforward manner. The results are given in the following

section, which summarizes the equations and boundary conditions for the various potentials.

20



8.0 SUMMARY OF THE COMPLETE FIRST- AND SECOND-ORDER PROBLEMS

The following separate problems are obtained by grouping together the results given by
eqs. (8), (13), and (17) and the results of the previous section. The boundary conditions

listed are to be applied on the mean wing surface, the mean wake surface, and the surface of

the mean cylindrical body. The normal coordinate, - , is positive when directed upward from

the mean wing surface or outward from the mean body surface.
o(e) :

Differential equation: (- M2) o xx  4- a = 0

wing: C- = -Cos9

Boundary wake
conditions wake: x O

body: o Cos = 4-

a() :(IA 4 )  ,X + , '0 + ,zz =o

wing: ; '  ;i W

wake: [Ix - 0

body: = - C

(20)

wing: =

wake: [2 .

body: a + Zx
a dx dx zx

(I(-M) 9< + i 3Y 4- o

wing: a -O

wake:

body = Sa./a 4-
an d21

21



wing: - 7 Al

wake: f ] = 0

body: C D d a4

O( ) : -- y =

wing:

wake: jo.5g ] = 0

body d :(20-cont.)
body: - SX

0(o) : -MZ to + f # ~~ 2 = 2M2

I a2 (7 =2 x

wing: = O

wake: EUx] M2, x x I2 X]- *~2]~, ]

body: =O

o(a) (I-MZ) x t 0a I ,, 22

M2 I 2

wing: - o

wake: " M X 2x ] 7(?2

body: R W7 (P4-R-X- R () 2- 4-

22



o(Cr)"- ,8) Y,xx + yy M y ' + 'z = z 2 +03

wing: a =

body: aS= X -- iC/ - )- Cos 5
') 77

wing: [= I(I + (Cos (i

wake: LY 'f 4-x 4X] 4i

body: ? = O (20-cont.)

O(ed) :(-M) toxX + ZM [ on SX a IXs4

+ M sxx)

wing: -- () FCos 9')4 -+Fi )
+ ( st - cos )

wake: o M 2 f/X P5x ][Sy5 j I, 75

body: ?= gO
a 7

Note: The underlined terms are of higher order and can be deleted if desired.
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9.0 SIMPLIFICATIONS

The complete expressions for the second-order terms summarized in the previous section

can be simplified considerably without compromising the basic objective of determining the

dominant sideslip term or terms. It was previously pointed out that different terms may domi-

nate, depending on the particular aircraft geometry. Thus, for example, if the wing dihedral is

large, the term /6 , will give the major sideslip effect, and it is unnecessary to take into con-

sideration the higher order terms. On the other hand, if the aircraft geometry is such that the

size of the term 4 p, is small (for example, d 0/, is zero for a planar isolated wing), then it

is necessary to include the second-order terms. The clue that enables one to effect a simplifi-

cation is to note that, for the example cited above wherein 1 P, was zero, all of the terms

involving 9P/ vanish in the second-order problems, which simplifies them considerably.

Let us first examine in detail the 0(4) and o(&-,) problems, which are reproduced

below for convenience.

5p, (21)

,7 9 on the wing (21)

[rx = 0 on the wake

a - = - Co5 4 on the body

(d4) (6-Me ,8 0 M+) = 2M 2 f9 .,l 4

(22)

7 0 on the wing

U'P × 3 2  /o x _ [ 9 on the wake

Son the body

The magnitude of the first-order term Y is governed by the boundary conditions of
the o (6) problem. The wing contributes an effect proportional to q) , and the body an
effect proportional to p 2 , the square of the mean body radius. Hence, the magnitude of
the d4 P, term may be denoted as o (,6 y ,4 p2 ). If y and pZ are small (of the same

order as o( , say), then the second-order terms are comparable in magnitude to this one.

24



Turning now to the O (4 ) problem, we split the particular solution of the inhomo-

geneous differential equation into two terms, (PI and p, , satisfying the equations

(I-4M ) Op/ x + OPW + P = ZMZ A,1 +P,

and (23)

I-M-) (Pp +xX 4-+/ = MI
where

particular =  p . (24)
solution (24)

An estimate of the magnitudes of (PP, and Y'P2 is obtained by examining the size

of the inhomogeneous terms. The flow due to angle of attack, 'P. , will be 0(1). The term

'P, is o(y, p 2 ) . Hence the magnitudes of the first-order term and the second-order

particular solutions must be as follows:

c; P o (0(,d) (25)

The simplification that can be achieved is now evident, for note that the last term,

d 4P , is always an O(o() smaller than A Vi , regardless of whether ) and P are

large or small. Furthermore, when (V and P1 are small enough to be of the same magnitude

as o, , which is the condition for which do 0PP, must be retained, then the term aS 'PP 1

may be neglected in comparison with d (PP, . Hence d cPp2  is always an O0()

smaller than the largest term, whether it be ,4P, or a, tp, , and may always be neglected.

One could also neglect that portion of '~", arising from the term 4l K on the right-hand

side of eq. (23), since it too must always be an o0C) smaller than the largest remaining term.

However, it will be retained in the later analysis, since it lends a degree of symmetry to the

relationship between 0 and 4 .

Turning now to the boundary conditions and applying the same reasoning as above, it

becomes apparent that the product terms involving '(l or its derivatives that appear in the

boundary conditions for P& may also be neglected, for they too will contribute terms which

are always an o (4) smaller than the largest remaining term. Hence the simplified problem for

the potential governing the interaction between angle of attack and sidelip reduces to
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O(d9): CI-Mt) + , , = MZ~ o- + , .

wing: = O

wake: 6X -[oJ -[ , aJ (26)

body: -

where the underlined terms could be neglected if desired.

The remaining second-order problems reduce in a similar manner. For example, consider

the O(e,6) problem involving P. , which is reproduced below for convenience.

o(ie)- ( 4/_ 2 ) % , +± +Xz, += 2M 2  4 , +

wing: -022 MJ p,, ) (27)

wing: a 1 'wU )4x'E #o/z 14' $ ]

+a ( P,Y qj

body: C = 0

Following the same argument as before, it is apparent that the contribution to the par-

ticular solution of G ,d P arising from the product terms involving Yf on the right-hand side

of the differential equation are always ano(e)smaller than the term , <p, , no matter whether

(t and pZare large or small. When wand p 2 are small enough to be of the same size ase, which

is the condition for which the second-order term 4d p, must be retained, then the product

terms are an o(4 , p2 ) = o e) smaller than the remaining inhomogeneity involving

(P4,y j. Hence in all cases the product terms are an o(G) smaller than the largest remaining

term and may be neglected.

The same reasoning applies to all terms involving '$j which appear in the boundary con-

ditions. When i and p. are large, the entire second-order term is negligible, and when (q

and pZ are the same size as a , then the terms in the boundary conditions involving 'P,

and its derivatives are an o(e) smaller than the remaining terms. It follows that all terms in

the boundary conditions for (Py which involve ?t/ or its derivatives can always be neglected.

26



10.0 SUMMARY OF THE REDUCED FIRST- AND SECOND-ORDER PROBLEMS

In summary, the problems for the various potentials reduce to those listed below. The

boundary conditions listed are to be applied on the mean wing surface, the mean wake sur-

face, and the mean cylindrical body surface of radius P . The normal coordinate, 7? , is posi-

tive when directed upward from the mean wing surface or outward from the mean body
surface. The angle# is as shown in figure 8. The reduced differential equations and boundary

conditions arise from application of the reductions derived in section 9.0 to the set of eq. (20).
The respective expressions for the pressure coefficients come from eq. (10).

Mean wing

Psy

Mean body surface

FIGURE 8.-CROSS SECTION COORDINA TES

Summary of Reduced Problems

O(): (I-M 2 ) 'oXX * o - "  = O

wing: 9 o

dR

"72

Cp =

o()- (i-M 2 ) X + (/ + 1,, =o

wing: 5 7 W

wake: o

body:- Cos 4

C,, = -24 ,
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O(a) (/-M2) x ' y = o

wing: 0

wake: [ '2x ] =

body: DS ld _ 4- R
5oy dXi /

0(c) : (I-M) C y3, +  =

wing:

wake: [C 3 ] = 0 (28-cont.)

body: ~ XSif= d a
a7 cd x x

Cp = -2 1 X

o(e): (I-M 2 )' S4 X V4 t- a

wing: ; = (P4

wake: bL04 ]=0
9' 4 a C/- --

body: --

, x = -20body: d 28
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wing: P=

wake: Fx= - I

body: -(P =

(2p, - 2c b(4 +2 +)

0(a16): (--M ) + 2 M2 Axy

wing: W=
77

wake: [-Px]= - f[' 2 J

body: 3 ? dR (28 cont.)
Sn Y/x dx

Cp, = - z e (x + )

o (cd) (I 2I) Pax X 4 + sea = 2 M0 xy

wing: P = O

wake:x ]-

body: -,,

O(Gd) : 2 / - EE 2 (4 x

wing: - cos

wake: - fjo 4xj3

body: On - O

Cp, = -2 ,9 x + )
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o(_z,): (-M 2 ) -Y, +  ,o~- = M ) 2

wing: -2O (F Co )

wake: exl= - Ps (28 cont)

body: ~ -0

CP a = - 2 " j; (T ox +

The solution for the flow about a wing-body configuration in sideslip is given by the

sum of the solutions yielding the individual perturbation potentials (c.f. eq. (5)).

It is interesting to attempt a physical interpretation of the second-order problems. Con-

sider first the inhomogeneous terms appearing in the differential equations. They apparently

serve to rotate the compressibility axis (the e -axis) through the angle 4 to correct for the

fact that in the first-order formulation the y -axis was not aligned with the freestream. This

is apparent from the particular solution which for the O(d) problem may be written down

by inspection as

,PC particular = - X' (29)

with similar solutions applicable for the other problems. The terms in eq. (29) are just the

first-order terms in the Taylor-series expansion of e, required to construct the analytic

continuation of the potential fo at any given point to a different point obtained by a

rotation through an angle 4 .

The wake boundary conditions of the second-order problems require the addition of a

spanwise component of wake vorticity equal in strength to 6 multiplied by the axial vorticity

component generated by the first-order solutions. The result is to incline the vorticity vector

in the wake to an angle 6 with the X -axis, which is physically correct.

The boundary conditions on the wing for the o(eg)and o(r,) problems account for

the effect of spanwise camber and thickness variations encountered by the sideslip component

of the freestream. For many configurations the spanwise camber and thickness slopes are small

enough to be neglected.
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11.0 PARTICULAR SOLUTIONS OF THE REDUCED SECOND-ORDER PROBLEMS

The distinguishing feature of the second-order problems that renders them more diffi-

cult than the first-order problems is the presence of inhomogeneous terms in the differential

equation. The first step in solving these problems is to establish the particular solution of the

inhomogeneous equation.

Since the inhomogeneous equations for the perturbation potentials f~e - o are all

of the same basic form, one can search for a generalized form of the particular integral to be

applied to all five cases. Let us describe the general problem in the following manner:

(i-M 2 ) IXX , + 2+ f 2 4 2 (0) (30)

where

cp = any of the second-order perturbation potentials

10) = the corresponding potential appearing in the inhomogeneity

All of the inhomogeneous equations appearing in (28) are of this general form. The general

wake boundary condition is written in the form

X =- )  on the mean (31)

wake surface

One form of a particular solution of eq. (30) can be found by inspection to be

=c ( .po ) (32)

However, this is not the most convenient form, for it introduces additional singularities into

the surface integrals appearing in P(O) (which will be expressed in terms of source and vortex

distributions on the boundary surfaces). A more suitable form for the particular solution is

available, and will be described in section 11.2.

11.1 DISCUSSION OF HOMOGENEOUS SOLUTIONS

As an aid in interpreting the behavior of the particular solution to be described in

section 11.2, it is convenient first to review the character and behavior of the homogeneous

solutions of eq. (30), which are identical in form to the solutions of the first-order problems

and whose behavior is well known. Homogeneous solutions will be expressed in the form of

source and vortex singularity distributions on the mean boundary surfaces. Let us introduce a

two-dimensional coordinate system X I, 0 on a mean boundary surface, where X is the

axial coordinate and £ the lateral coordinate, as shown in figure 9.
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Mean boundary surface,S

/1 Y

x1 out of the page

FIGURE 9.-SURFACE COORDINATES

A third coordinate, n , is defined normal to the surface, h;ving positive orientation when
directed along (-I xf) . With this notation, the homogeneous solutions appear in the form
of surface integrals, as given below.

Vortex Distribution

(V7, , ) =.f.f.r 2 ) (X, V , Z, Y, )dS (33)

where

X, , Z = coordinates of a field point

V
V ( , y,) = portion of the perturbation potential contributed by vortices

( (X ', ) = vorticity density, on the surface, of strength established by the boundary
conditions

ds =d ,d

The function k<V(x, 4,i, x,, I) denotes the potential of an elementary horseshoe vortex
located at ( ~,R) . It is defined as:

'G (s)2- 2 --e,(59 "(34)

+ -X,(5)(
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( - y, (5))2 + (- t2,() (34 cont.)

L4 ((x -x, cs) - (5))2 +(Z (5)) 2  )]

where

l(5)y,  ,(s),Z,(5) = a point on the surface S

= radius vector from (x, (s), j, (s), Z, (s)) to a field point (x, , a)

B = 1-- -I

o For o L o

Source Distribution

PX,y,) (x, ) KS(, 1, z, x,, f)fs (35)

where

Vs(, y, 2) = portion of the perturbation potential contributed by sources

7m (X,, ) = source density on the surface S.

The function KS ( ), I, X,,Q ) denotes the potential of an elementary source located at

(x,, ). It is defined as

td I s  --
M I: K= - 4( _,s) + 1, (sX) + (A -Z, (5))2

(36)

s ((x-x,(s))-~ ( .Y,(s))2+ ( -2, (s))Z)
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The entire homogeneous solution is given by the sum of these surface integrals as

(0) V

( (x,, = C , 2) i , , ) (37)

Let us now review the behavior of these surface integrals in the limit as the point

approaches the surface. In particular, it is of interest to examine the resulting velocity dis-

continuities which appear across the surface. For this purpose we decompose the j integra-

tion into several parts, separating out for special study a segment of length E around the

point on the surface approached by (, y, ) as shown in figure 10. It can be shown that all

discontinuities across the surface arise from the singularities on the small segment C and that

the effect of the remaining part of the surface may be disregarded. Also, the effect of surface

curvature over the small segment E can be disregarded, thereby reducing the problem to that

of an integral over a planar strip of width E inclined at an angle P to the Y -axis.

Upper side
Surface S

Lower side

Y

FIGURE 10.-REGION OF INTEGRATION

After carrying out the integration over the segment with the aid of a Taylor-series

expansion of n (X, ,1) and r (X,, -) about a point on the surface and letting the field

point (x, y, ) approach that point on the surface, one finds the following results for the

discontinuities across the surface, which are well known.

UPPERSIDE LowERS De
Srr (x, y - - (oC e, () 0x CX

(38)
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where

A t = discontinuity in the tangential velocity component in the lateral direction

and

A n = discontinuity in the normal velocity component

as shown in figure 11.

Tangental velocity components

Normal velocity components

FIGURE 11.-DISCON TINUI TIES IN VEL OCI TY COMPONENTS

The lateral discontinuities may be decomposed into components in the Y and =

directions as

AVO '~= co _ dx -'m (x , ,)5zn .'

(39)

So, 5 d, + -m(x 0Co i

It should be noted that in the wake behind a lifting surface only the lateral discontinuities

arising from the vortex distribution are nonzero.

11.2 PREFERRED FORM OF THE PARTICULAR SOLUTION

With these results in mind, we now proceed to write a preferred form of particular solu-
tion and examine its behavior. The particular solution selected is
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S

-ff( -X , (5) r X, (K , , &5

(40)

+J (-y,) m (x,,,I ,. (K5 (x, y, z, x, / ) c/s

Let us first verify that this is a particular solution of eq. (30). To do this we decompose
eq. (40) into homogeneous and particular parts. The homogeneous part is

5 s

(41)

ax fJyIi Is-f rf m K csJ}X, F Kat S L fsXMnxs sX (41)

The bracketed terms are of the same form as the homogeneous solutions (33) and (35),
with the vortex and source densities interpreted as ( V, r) , (y, m) or()(, r), (X, r). They
are thus homogeneous solutions. The derivatives of these terms appearing in eq. (41) are also
homogeneous solutions, for it is easily seen by differentiation of eq. (30) that derivatives of
homogeneous solutions also satisfy the homogeneous equation. Thus the terms in eq. (41) are
indeed homogeneous solutions.

The remaining part of eq. (40) can be written as

The latter steps follow from eqs. (33), (35), and (37). It is readily verified by direct substitution

into eq. (30) that eq. (42) constitutes a particular solution. It thus follows that eq. (40) is alsoa particular solution.
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Let us now restrict our view to the small strip of width P ,since it contributes all of the

discontinuous behavior. Define a local coordinate system aligned with the strip, as shown in

figure 12.

>71

Y

FIGURE 12.-LOCAL COORDINATE SYSTEM

In terms of these coordinates, eq. (40) becomes

¢ cos Y ff (, 7- 1 ' d - si"ftI;-r a V ,)KVdx,

akv 
v

--coyt qX-)(t) r d X q, + sz uf/Cx-,)r " ,

(43)

-Cos S Sf M- ,) m., dX, d/7, .s ( -,),X, -,ox, d

where it is understood that ?P  now consists only of the contribution from the strip of

width E.

It is now a simple matter to deduce the limiting behavior of these terms from a knowledge

of the basic properties of the integrals which led to the results given by eqs. (38) and (39). For

example, let us consider the behavior of the first term arising from the discontinuity in it

It is

S COs A f (?-) 7Cd X, Cd, 7i ., ter (44)
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From eqs. (33) and (38) it follows that

Xx a (45)

This differs from the term appearing in eq. (44) by the factor (7i - 7,) in the numerator,

which approaches zero as E --- . Hence the term in eq. (44) is at most o(s) compared

to (x, 7), and must vanish as E - o . Repeating this type of reasoning for all the

terms leads to the following conclusions for the velocity discontinuities arising from the

particular solution:

Discontinuity in p X

Upon differentiating eq. (43) with respect to X and examining the behavior of the

various terms in the manner described above, one finds only one term that contributes to the

discontinuity in .It is

It follows from eq. (39) and the comment immediately thereafter that the velocity disconti-

Co- E D 1(46)

cos V a XDiscontinuity inX, ) ']

W [ f < , r,]

It follows from eq. (39) and the comment immediately thereafter that the velocity disconti-

nuity across the wake behind the surface is equal to

--CO- V f / (47)

Thus, the particular solution satisfies the wake boundary condition, eq. (31.)

Discontinuity in

The terms from eq. (43) contributing to the discontinuity in 1077 are:
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= c op - Y[ff +([77- j)+xrJx, )(J

f x dx, , x, j,

- C.45 < (X)-x,) a ~ dx

P
Discontinuity in -Normal Velocity Component

P
The terms from eq. (43) contributing to a discontinuity in are:
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(49 cont.)

Thus we find a discontinuity in the normal velocity component that is proportional to the

vorticity distribution of the homogeneous solution.
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12.0 COMPARISONS WITH KNOWN SOLUTIONS

To gain confidence in the present theory it is desirable to compare results with some

known solutions. This can easily be done for the limited class of problems involving planar

wings in sideslip, since the present theory can then be compared with a first-order expansion

in 6 of the first-order solution in d obtained with a skewed planform. Two different prob-

lems will be considered.

12.1 INFINITE YAWED WING IN INCOMPRESSIBLE FLOW

Consider an infinite yawed planar wing lying in the X- Y plane, with coordinate sys-

tems and freestream direction as shown in figure 13. The freestream is inclined at the angles

FIGURE 13.-INFINITE YAWED WING ORIENTATION

oC and 6 to the coordinate planes such that the freestream velocity components in the coor-

dinate directions are

V x V Co S cc( CoSe

(50)
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The pressure distribution on this wing can be ascertained by means of simple sweep theory,

considering the sweep angle to be (AJ 4* ) . This result will then be compared to the pres-

ent theory, which considers a wing of sweep angle A subjected to a sideslip velocity d V, .

To obtain the simple sweep result, we first establish the freestream velocity components

in the , ? , and $ directions. Retaining only first-order terms in C and , , a simplifica-

tion which is consistent with the present theory, these turn out to be

V/ = , co5-A- At 4-] (51)

The pressure distribution is determined by the angle of attack of the normal flow,

which is

Z/" o. LI ,A C -5 ._ J/ (52)

The latter equality is valid to first order in ' .

Now the pressure discontinuity across a two-dimensional flat plate of chord c is known

to be (ref. 3)

d2 - (53)

where V. and 2o-are the normal freestream component and angle of attack. Substituting

for v and a D results in

P- P-- 4- C,+, -,,t .I °-
2r z 4o . [i-*-4 'ctn2 j 1  3 n _L

2 .5 _.L [I- -- att V =  co-iJ - (54)

which reduces to

_6 PP _ fI4- 'a'?A 1 (55)
SCp /- -  4 .cas A (55

within first-order accuracy. This is the pressure distribution given by simple sweep theory,

valid to first order in .
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Now let us work out a comparable result by means of the present theory. The various

problems, from eq. (28), are

wing: o -
(56)

wake: [cex ]= O

0(). 9 xx .+

wing:
(57)

wake: =[sX] 0

Cp = 2 / x

o(o)! (7O~,(x + 0 -0

wing: a = O
. n (58)

wake: =-

The total velocity potential for this simple case consists of

= 'V' ( X + 4 j + Z C O 'd Ad. C/ (59)

The solution to the O(oC) problem is easily derived from simple sweep theory by setting ,
equal to zero in eq. (55), giving

o% "  C .(60)AC 4 o cos A (60)

The o(5) potential, %Pt , is zero, since all of the boundary conditions are zero.
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The O(d5) potential, , is also zero, since the equation is homogeneous when M - 0,

and all the boundary conditions are zero. Note that, for this particular example, [Cqf] =
in the wake. Hence the only contribution from the o(d(4) problem comes from the

expression for Cpo , which reduces to

C = - P / (61)

Now, from simple sweep theory,

-0o' = -'' i t_"A (62)

fo0x is related to Cpa by the expression (eq. 56))

Cp = -2 o( Poox (63)

Eliminating Yox and 0,j between eqs. (62), (62), and (63) finally gives

Cpg = 'J2 0(A0 X -a . - t A Cpa (64)

Combining eq. (60) and (64) to obtain the total pressure coefficient, one finds that

ACp ACp, Cp -AC 1  [I -,.- ] (65)

Thus, one obtains a term of o() and another of ot(d) . The entire expression is equal

to the simple sweep theory result of eq. (55), which demonstrates that the present theory

gives the correct solution for this case.

12.2 PLANAR WING IN SIDESLIP-SUBSONIC COMPRESSIBLE FLOW

For this case we shall write the first order in OC solution obtained with a skewed plan-

form and then expand this solution in powers of the skew angle / . This will then be com-

pared with the results of the present theory.

Consider the wing of planform 5 shown in figure 14, which lies in the K- Y , -
plane. The freestream is directed according to eq. (50). The problem will first be formulated

in the , , $ coordinate system, in which the freestream has no sideslip component.
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Y

Planform S

FIGURE 14.-SKEWED WING PLANFORM

This problem is

o((-() (-M 2 ) f +p + =0

-I
wmg.Iwing: (66)

wake: F ]

where the total potential is

= - / v -- p 4- C( 3p (67)

The solution of this boundary value problem can be expressed in terms of an integral

equation expressing the influence of a distribution of elementary horseshoe vortices. This

expression is

j 71 7 ):, 7) 1V 7, S S  7 / (68)
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where ~ , is the strength of the bound vorticity and k V is the potential of the

elementary horseshoe, given by eq. (34) as

K = 1 I + - l  (69)4-IT+ ( ,) + a ) + 7)( +

We now expand this solution in powers of6 by introducing

"o, + .,7,d X -/-Y

7= - X-5i +ycos, X -'x -"t (70)

.' is expanded as

Two terms result from the expansion of &" . One is the expression (69) with r and 71

replaced by X and ' , which will be denoted as K'

V I _ _. X-X,

4 T (+ Z2X,)2 + _, _ ,
V

The other term, of O("g) , which will be denoted as 9 k2  , can be written as

1 1 (73)

Note that this is identical to the form of the particular solution given by eq. (40).

With these expansions, the solution (68) takes the form

C a (x, , ) = ( (X, , ) , , ,,, x,, Y, ) d x,

#c {4', , y") kKd, ) XIc/) d( , y (74)
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The boundary conditions become

wing: = -I

(75)

wake: Le +;( = 0

Let us now turn to solving the problem by the method presented in this report. The o (0o)

problem is

4I - M Z ) 4Lo -X -

a <p (76)
wing: -

(76)I

wake: x oX]-

The o(d) solution is identically zero, because of the zero boundary conditions. The o (C'4A)

problem, however, is

wing: - o (77)
h77

wake: -

The total velocity potential is

V.[,Y +4 d o( - O + dR 4- & (78)

The solutions to these problems are

O(X) : ,- (X,, r) KIY( X)€, t- .(, yl)d X' dYI (79)

o6(8) : 50 = (1 J4 (x,, ,)K ,(K , y, , x,, y, ) d K,dy, (80)

+ ff r3 ( xt,,, i l, ))8,)

where (3 and r4 are established by the boundary conditions. The latter term is composed

of a particular solution involving K v (see eq. (73)), and a homogeneous solution containing
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Having obtained a solution by both methods, it remains to compare them. First note

that the solution (74) is composed of an o(v) term and two O(a6) terms, which would be

identical to the solution by the present method, the sum of eqs (79) and (80), provided that

it can be shown that

21, = r+ (81)

This can be done as follows. Let us write the term c '(O as

Z(q 10 _k C( (82)

where c 0C is equal to the first right-hand term of eq. (74) and d6 O4 is equal to the

remaining terms. If we can show that X, = S3 and 'z = 4 , then o4 and 'Pe

will be equal to their counterparts fa and gog obtained by the present method. Substi-

tuting the expression (82) into the boundary conditions (75) gives

wing: - 4- -I

(83)

wake: x]

Equating orders of 4 gives

0(0()" wing: a )-
3. (84)

wake: o

o (dS ): wing:,- - O
3 C (85)

wake: [ ]
In comparing these with the boundary conditions given by eqs. (76) and (77), it is

obvious that the boundary conditions determining X, and tz are identical to those

determining J. and r4 , and hence that 2, = e3 and S2 = 4 . Thus the equiva-

lence of the solutions by the two methods has been proved.
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13.0 CONCLUDING REMARKS

A theory has been developed for predicting the aerodynamic properties of an airplane

in sideslip. The airplane geometry was defined in terms of small parameters governing the

angle of attack, angle of sideslip, wing camber, wing thickness, body radius variation, and

body camber. These small parameters formed the basis for a perturbation expansion approach

wherein the velocity potential and boundary conditions were expanded as asymptotic series

in powers of the small parameters. All first-order terms and those second-order terms involv-

ing the interaction between sideslip and the other small parameters were retained.

The development produced a set of first-order homogeneous boundary value problems

giving the influence of each small parameter, and a set of second-order inhomogeneous prob-

lems giving the interactions between sideslip and angle of attack, sideslip and camber, etc.

It was found that certain of the inhomogeneous terms appearing in the second-order problems

were always of higher order than those producing the dominant effects and hence could be

deleted. This led to a simplification of the second-order problems such that generalized par-

ticular solutions could be obtained. A particular integral was found which has the property

of automatically satisfying the second-order boundary conditions on all trailing vortex sheets.

With this, the remaining second-order homogeneous part of the solution can be constructed

by the same methods used to solve the first-order problems. The theory was checked by com-

paring with known solutions for an infinite yawed wing and for a skewed flat wing.

A major conclusion is that the dominant effects influencing the aerodynamics of side-

slip can appear either as first-order or as second-order terms, depending primarily on the

magnitude of the dihedral of the lifting surfaces. For configurations having large amounts of

dihedral, the first-order terms dominate. Sideslip aerodynamics will then depend primarily on

the angle of sideslip alone, and will not be strongly influenced by interactions between side-

slip and angle of attack or between sideslip and the other parameters. For such configurations,
the aerodynamic description given by conventional first-order theory is sufficient.

However, if the dihedral is small, then first-order theory fails to give the dominant effects.

For such configurations, the second-order terms involving the interaction between sideslip and

angle of attack, etc., are major contributors to sideslip aerodynamics, and it is essential that

they be taken into account.

Another outcome is that highly accurate numerical solution procedures are necessary in

any calculation of second-order sideslip aerodynamics. This requirement arises from the singu-

lar nature of the kernel of the particular integrals for the second-order problems. The kernel

is more singular than its homogeneous counterpart, and integration by parts can be used to

show that the numerical value of the particular integral depends strongly on the local gradients

of the coefficients involving the first-order source and vortex strengths. This behavior can also

be seen in the alternate form for the particular integral,

= 49 (0
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from whence it is obvious that an accurate knowledge of the velocity derivatives of the first-

order solution is required for the evaluation of aerodynamic forces and pressures contributed

by the second-order particular solution. It is apparent, then, that the present theory must be

accompanied by a numerical solution procedure that meets requirements more stringent than

those ordinarily needed in a first-order analysis. For an ordinary first-order analysis the aero-

dynamicist is usually satisfied with a numerical solution procedure that provides accurate

forces and pressures (velocities). In contrast, the present second-order theory must be accom-

panied by a numerical method capable of producing accurate velocity gradients in the first-

order solution.

The Boeing Company
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